Improved Prediction of Infliximab Clearance Using Erythrocyte Sedimentation Rate and Anti-infliximab Antibody in Pediatric Patients with Inflammatory Bowel Disease

<u>Ye Xiong¹</u>, Laura Bauman², Tomoyuki Mizuno¹, Tsuyoshi Fukuda¹, Min Dong¹, Michael Rosen², Alexander A. Vinks¹

Divisions of 1) Clinical Pharmacology, 2) Gastroenterology, Cincinnati Children's Hospital Medical Center

Inflammatory Bowel Disease in Pediatrics

- Inflammatory bowel disease (IBD) is consisted of Crohn's disease and ulcerative colitis.
- Affecting ~1.4 million people in North America, pediatric onset accounts for ~ 20% of overall IBD population.
- Pro-inflammatory cytokine TNF-α localized in bowel induce tissue damage in IBD patients.

Pariente et al. Inflamm Bowel Dis. 2011

Infliximab Treatment in Pediatric IBD

- Infliximab (Remicade[®]) is anti-TNFα antibody, a mainstay choice in treating moderate to severe IBD.
- ✓ Widely used in pediatric patients (35-55%)
- ✓ Patients on infliximab for up to 7 years with great efficacy and safety.
- Loss of response (~40% of patients) is associated with failure to maintain target trough concentrations.

Identify influential <u>patient- and disease-related</u> factors that can lead to better prediction of the variability and allows optimization of the dosing strategy.

METHODS

Clinical data review

Retrospectively evaluate dose and infliximab target attainment

Model development

n=135, covariate effect on clearance e.g. biomarkers, patient factors

n=94, predictive performance in new patients, compare with literature model

Model validation

Individualize Dose

Dose prediction with model, or in combination with feedback

Large Variability in Infliximab Trough Concentrations

74% were outside of target C_{trough} range 42% did not reach the target C_{trough}

Target range: Vaughn et al. Inflamm Bowel Dis. 2014

Patient Characteristics at 1st IFX C_{trough} Record

- 135 patients for model development
- 80% of patients were diagnosed with Crohn's
- 40% of patients were females
- Anti-infliximab antibody (ATI) was detected in 66% patients
- A broad spectrum of laboratory values were available for covariate analysis: albumin (ALB), erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), hematocrit, platelets, etc

Refine Population PK Model with Pediatric Data from Clinical Practice

<u>Model</u>: Adapted from existing model (Fasanmade 2011) of pediatric cohort, to explicitly examine disease markers or factors that influence PK behavior of infliximab

Covariate Effect $CL_{ind} = CL_{pop} \times (WT/65)^{0.7} \times (ALB/3.5)^{-1.1}$ on Clearance $\times 1.18^{ATI level} \times (ESR/9)^{0.11}$

*Additional informative covariates were identified that further explain the variability

Individualized Dosing Strategy - Proactive vs Reactive

<u>Current practice</u>: Dose adjustment driven by symptoms and trough concentration

SUMMARY

- High body weight, erythrocyte sedimentation rate, anti-infliximab antibody level, and low albumin values were associated with increased infliximab clearance.
- The extended covariate model has potential to proactively individualize dosing regimen.

NEXT STEP

- Build individualizing application and incorporate into EHR
- Evaluate the proactive dosing strategy in comparison to current strategy

ACKNOWLEDGEMENT

Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) T32 pediatric clinical pharmacology training program (Award # 5T32HD69054)

Division of Gastroenterology

Michael Rosen, MD Laura Bauman, MD Phillip Minar, MD

Division of Clinical Pharmacology

Alexander A Vinks, PharmD, PhD Tsuyoshi Fukuda, PhD Min Dong, PhD Tomoyuki Mizuno, PhD Chie Emoto, PhD David Hann, PhD Brooks McPhail, PhD Kana Mizuno, PhD Rajiv Balyan, PhD Holly Ward

Patient Characteristics at 1st IFX C_{trough} Record

Number of	N=135	% Crohn's Disease	80.1%
Patients		% female	39.7%
Variables		Median (SD or IQR)	
Age (years)		14.5 (3.8)	
Body Weight (kg)		55.9 (22.3)	
Infliximab Level*(mg/L)		4.8 (1.9-11.3)	
ATI Level*(ng/mL)		22 (22.0-48.5)	
% Positive ATI (>22 ng/mL)		66.2	
Infusion Number		7.2(5.2)	
Hematocrit (gm/dL)*		38.9 (36.3-41.6)	
Platelets (k/mcL)		304.4 (109.1)	
WBC (k/mcL)		7.4 (2.8)	
ESR (mm/hr)		15.5 (14.9)	
CRP (mg/dL)		1.6 (1.6)	
Albumin (gm/dL)		3.6 (0.5)	
AST (u/L)		25.4 (21.6)	
ALT (u/L)		26.6 (17.0)	
Total Bilirubin (mg/dL)		0.37 (0.2)	

Presented as median and SD (or IQR for non-central distributed parameters)